

A Proposed Results Framework for Large Scale Research Infrastructure

Presented by:

Gretchen B Jordan, 360 Innovation LLC

(co-author Steve Montague, Performance Management Network)

Presented at:

Atlanta Conference on Science and Innovation Policy

September 17, 2015

The work presented here was completed for the National Research Council of Canada through a contract with Performance Management Network (Canada). Opinions expressed are solely those of the authors.

Need for and Objectives of the Study

Expressed Need

• Enhance the ability of Canadian agencies with an interest in funding Large Scale Research Infrastructure (LSRI), and the LSRI facilities themselves, to evaluate the nature and extent of impacts of LSRI on science, the economy and society.

Objectives of the Study

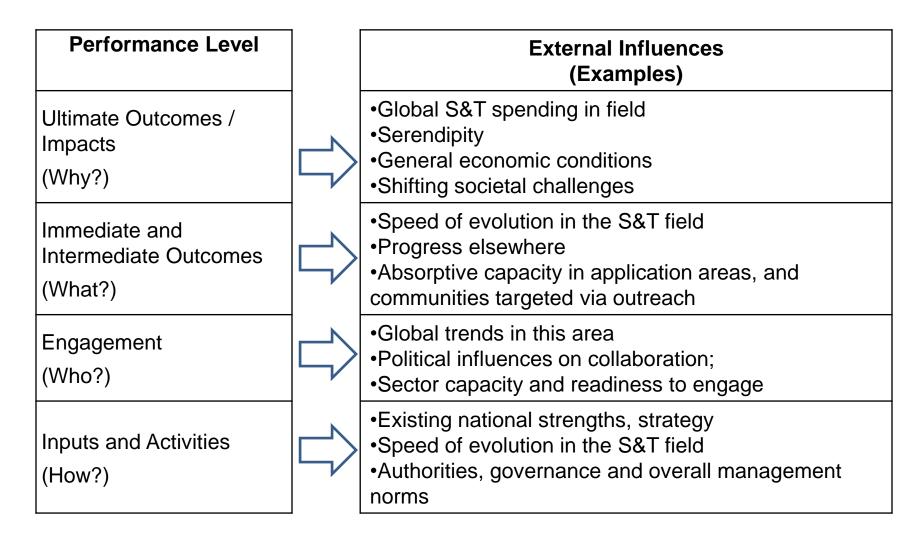
- Review existing practice and literature, identifying best practices and systems of measurement (evaluation) for LSRI impacts
- Recommend an approach including performance questions, indicators and methodologies with attention to what is unique to LSRI

Review of Literature and Consultations

Over 100 documents and sources (including websites) gathered and reviewed

- Several recent reviews have noted the scientific and economic impacts of 'big science'
- Few suggestions for improvement, and those propose theoretical frameworks for evaluation

Consultations with managers of 7 Canadian facilities and 4 international facilities

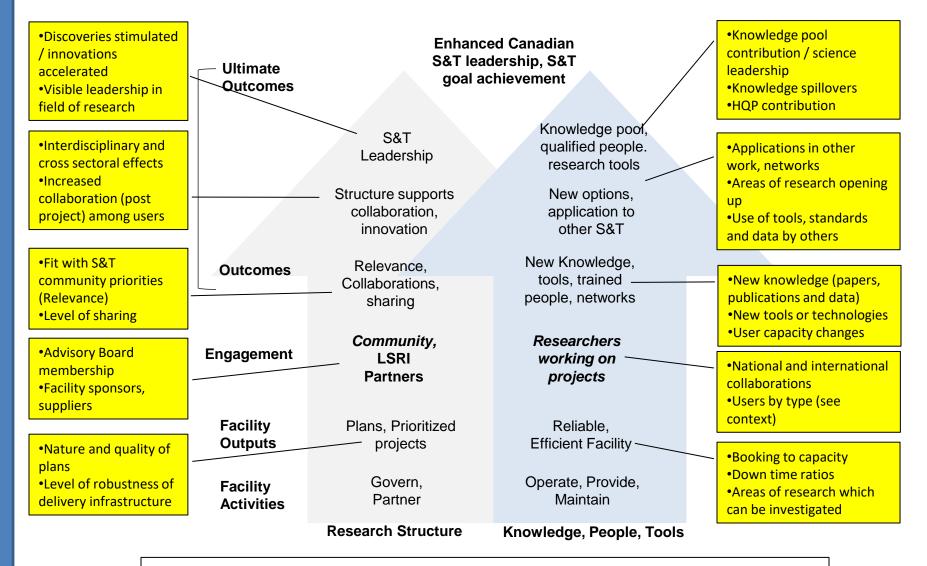

- Interested in improving assessment of impacts, considering their current approach inadequate
- LSRI report quantitative indicators of what can be counted
- Impact assessment is done with success stories and occasional economic cost benefit analysis of selected successes

Gaps in Current LSRI Impact Assessment Practices

- Wide variance in the nature and context of LSRI conditions relating to performance – not consistently described
- Limited and inconsistent impact pathways
- Limited monitoring and evaluation approaches

If these gaps are addressed, the contribution of LSRI to societal benefits can be better understood and decisionmakers will be better informed to make investment, policy, design and delivery improvements.

Contextual Dimensions for LSRI

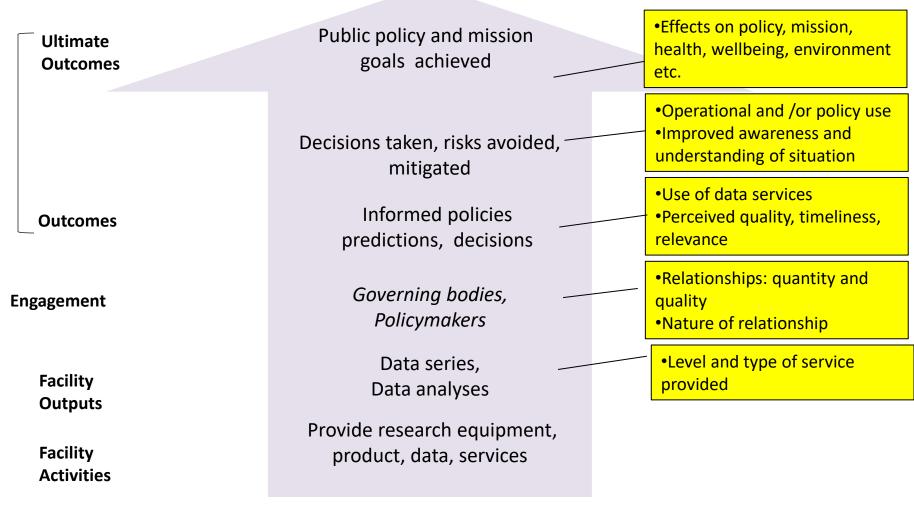

Proposed LSRI Logic Model – Six Impact Pathways

- Research Structure
- Knowledge, People, and Tools
- Competitive Industry
- Policy Effects
- Appreciation of Science
- Local Benefits

A Generic Logic Model with Six Impact Pathways

Ultimate Outcomes			Canadian S&T goal achievement	Enhanced economic, social well-being of Canadians through innovation			
		S&T Leadership	Research tools, Knowledge pool, qualified people	Economic benefits of new products, processes, practices	Public policy and mission goals achieved	Contributions to Research Capacity	Direct Contributions to the Economy
		Structure supports collaboration, innovation	New options, applications of new S&T	Competitive companies, market clusters	Decisions taken Risks avoided, mitigated	Public advocacy, Students in STEM	Effects of spending, leverage
Outcor	mes	Relevance, Collaborations, sharing	New Knowledge, tools, trained people, networks	New product, process developed, tech. standards	Informed policies predictions, decisions	Students, Public educated, inspired	Local spending, firm leverages technology
Engager	nent	<i>Community,</i> LSRI Partners	Researchers working on projects	adopted Industry Marketplace , Commerce	Governing bodies, Policymakers	Students, Public attending events presentations	Employees, visitors, firms doing upgrades
Facility Output		Plans, Prioritized projects	Reliable, Efficient Facility	R&D opportunities, consultations	Data series, Data analyses	Events, curriculum, Information	Payroll, Expenditures, Upgrade contracts
Facility Activit		Govern, Partner	Operate, Maintain	Provide research equ data, ser	· · · ·	Outreach	Operate, Upgrade
Impact Pathwa		Research Structure	Knowledge, People, Tools	Competitive Industry	Policy Effects	Appreciation of Science	Local Benefits

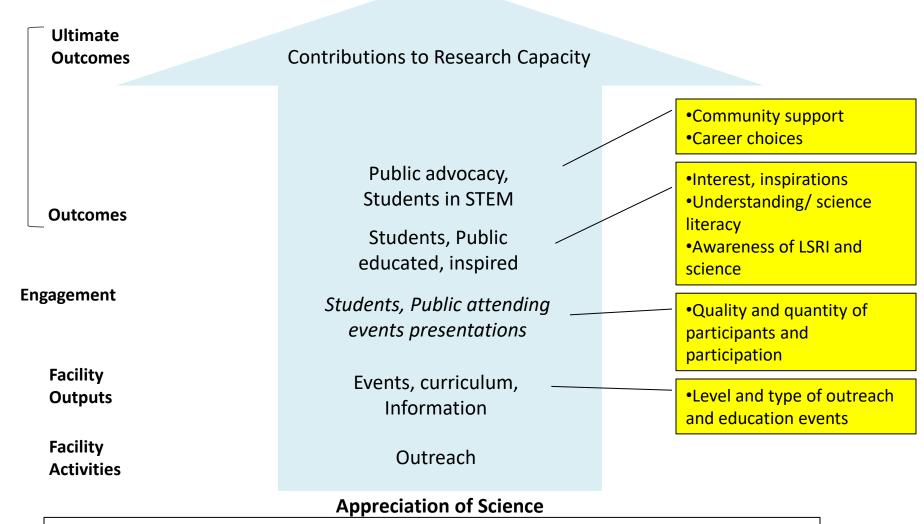
Create a Research Structure That Supports Discovery and Innovation and Build Knowledge and Research Capacity – Some Select Metrics


These pathways follow a science support and impact logic – enabling better science, HQP networks and knowledge pool improvements. Qualitative contextualized approaches (e.g. case studies) will be important to complement quantitative indicators.

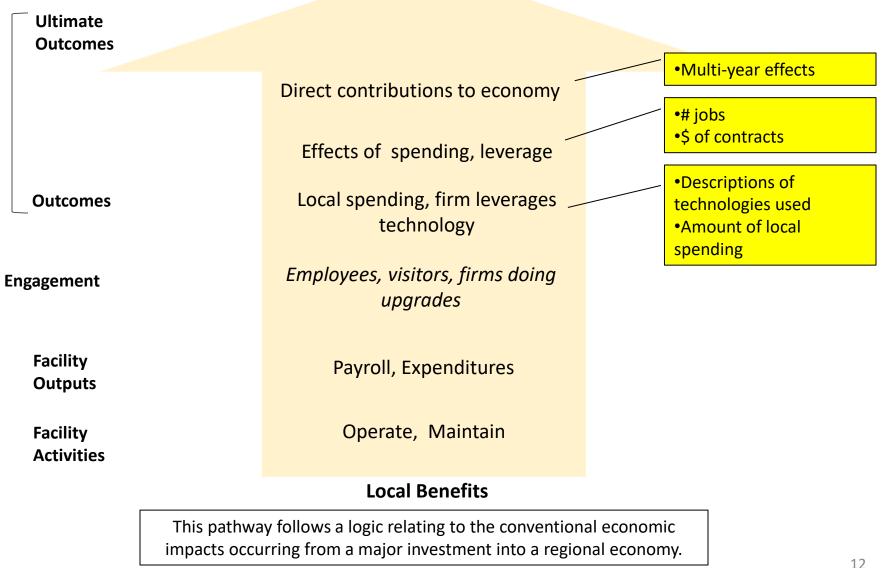
Contribute to New Technologies, Competitive Companies, Markets Clusters – Some Select Metrics

Ultimate Outcomes	Economic benefits of new	•Market access monitored •Employment •\$ net benefits
	products, processes, practices Competitive companies, market ———— clusters	 Process / product innovations commercialized Various supplier / user economic activities
Outcomes	New product, process developed, — tech. standards adopted	•Use of data / services •Technical milestones achieved •Knowledge produced
Engagement	Industry Marketplace , Commerce	•Relationships: quantity and quality established (by
Facility Outputs	R&D opportunities, consultations	type, subsector) •Use by type of service- industry
Facility Activities	Provide research equipment, product, data, services	 Data, products provided to industry Characteristics of R&D services available to
	Competitive Industry	industry
This pathway fo	llows a product-process commercialization (marketplace	innovation) logic. Key

This pathway follows a product-process commercialization (marketplace innovation) logic. Key impacts relate to the benefits of commercialization and innovation such as employment and net financial benefits to industry. The potential for this pathway varies extensively by LSRI.


Inform Government Policies and Decisions – Some Select Metrics

Policy Effects


This pathway follows a logic relating to science influencing public mission and policy (and some operations). The key metric for this pathway is contribution to mission achievement. The nature of this pathway and its potential varied extensively by LSRI and policy area.

Student and General Public Appreciation of Science – Some Select Metrics

This pathway follows an education and social marketing logic. The key metrics involve tracking engagement, reactions and then knowledge and attitudinal changes. Difficulties attributing longer term results means that only limited effort should be taken to track this path in most cases.

Direct Economic Impacts of Facility Spending and Upgrades – Some Select Metrics

Good Practice: Components of Proposed Framework for LSRI Impact Assessment

- At the beginning of the assessment period, define the logic of the LSRI, including the conditions underpinning this. This will vary considerably across LSRI.
- 2. Next, describe a sequence of results expected for all the impact pathways that apply, and determine indicators to see if these occur.
- 3. To assess impact along the pathways, develop and implement a multi-year assessment plan that has three levels of analysis integrated over a period of time: monitoring, mid term review, and periodic in depth assessment.

Conclusions

- Logic models and underlying conditions are critical for framing performance
- Distinct impact pathways and common indicators can be described and used
- Multi-year assessment plans and mixed approaches (both qualitative and quantitative) with consideration of context make sense in most cases

Contact Information

Gretchen Jordan 360 Innovation LLC <u>Gretchen.jordan@comcast.net</u>

Steve Montague Performance Management Network Inc. steve.montague@pmn.net

Templates, Differences in LSRI Impact Pathways

Jordan and Montague, AEA 2014

Template 1: Questions to help define logic and existing conditions

The following are questions that LSRI staff can answer to develop a description of the program logic or impact pathways.

The "Why" (Ultimate Outcomes)

- 1. In what area(s) will this LSRI enhance Canadian S&T leadership (fields, enabling services)? What broad strategic needs are served? How does it fit into national S&T policy? Why is it significant?
- 2. What role does this LSRI play in the international arena? How does it benefit S&T in this era of globalization?
- 3. Can it bring together and focus S&T communities?
- 4. What are likely and/or possible socio-economic impacts from use of the outputs of the LSRI and its users in further S&T or new commercial products or processes or policies or practices?

The "What" (Early Outcomes and Outputs) Consider all of the impact pathways that might apply.

- 5. What user needs are satisfied by this facility?
- 6. What specific results can be expected in five years in the arenas the LSRI operates in? For example, these may be big science questions (define these) or options for solutions to an identified problem, or development of a new technology?
- 7. What are the possible application areas for those results, scientific and otherwise?
- 8. What, if any, results are expected from education and outreach activities?

The "Who" (Engagement of Partners and Users)

- 9. What S&T communities support and/or use this LSRI, national and international?
- 10. How multi or interdisciplinary or trans-sectoral is the work supported?
- 11. How much development and innovation is currently occurring in equipment, techniques, data, technical standards, and/or services of the facility? Might this spill over to firms or other applications? Where?
- 12. To what extent and how are industry and government policy makers directly involved, if at all?

The "How" (Activities and Inputs)

- 13. What are the unique capabilities of the LSRI that enable research? What kinds of research?
- 14. Does LSRI staff perform research and development as well as host these activities?
- 15. What activities does the LSRI perform in addition to research and research support? These could include providing products, data sets, analyses, protocols, public outreach.
- 16. What else, if anything, distinguishes this LSRI: Capital intensity, economics of scale or scope?

External Influences (Driving and Restraining Forces for Success)

- 17. What big picture changes might influence your success, such as global S&T spending, serendipitous discovery, or economic or societal conditions?
- 18. What circumstances anticipated or not might slow or hasten your progress toward outcomes, such as pace of evolution in S&T, S&T progress made elsewhere, technology readiness of those who would apply S&T to problem areas?
- 19. What external events could influence collaborators or user groups, such as global trends, capacity, or political influences in collaboration or expenditures on S&T?
- 20. What external influences, that you have not already accounted for in LSRI design, might affect how the LSRI operates (e.g. national strengths or strategy, scientific or technical change, or governing authorities and management norms)?

Template 2: Description of Impact Pathways

TEMPLATE 2								
	Description of Impact Pathways (not all will apply)							
Area	Research	Knowledge,	Competitive	Policy	Appreciation	Local		
	Structure	People,	Companies	Effects	of Science	Benefits		
		Tools						
Activities/								
Outputs								
Who is								
Engaged								
Other major								
influences								
Early								
Outcomes								
(1-2 years)								
Intermediate								
Outcomes								
(3-5 years)								
Longer term								
Outcomes								
(6-10 years)								
Ultimate								
Outcomes								
(10+ years)								

Template 3: Assessment questions, indicators, approach, data sources

	Level 1 Data Collect	tion and Analysis – Routine M	onitoring				
Торіс	Questions	Indicators	Assessment <i>Approach</i> Data Sources				
Outputs, Engagement, S	Short term Outcome	s, Influences for Activity Area	(Impact Pathway) 1				
Outputs				Level 3 Data Colle	ction and Analysis –	Periodic In Depth S	tudy of Impacts
Engagement				Торіс	Questions	Indicators	Assessment Approach
Short -term Outcomes				горіс	Questions	indicators	Data Sources
External Influences				Contribution to - For each imp	oact pathway that ap	plies using data fro	m Levels 1 and 2
Outputs, Engagement, S	Short term Outcome	s, Influences for Activity Area	(Impact Pathway) 2	S&T Leadership and			
Outputs				National Goals			
Engagement				Research Capacity			
Short -term Outcomes				(Knowledge, tools, people)			
External Influences				Socio-economic impacts through Industry			
Level 2 D	ata Collection and	Analysis – Periodic Assess	ment of Outcomes	Socio-economic impacts through Policy, Government			
Торіс	Questions	Indicators	Assessment Approach Data Sources	Impacts through Outreach to Students and Public			
Impact Pathway Area 1				Estimated Direct and/or			
Relevant Monitoring Data				Indirect Benefits			
Short –term Outcomes				 (Facility Expenditures, upgrades; Take up by 			
Intermediate-term				Industry, Government)			
Outcomes						I	
Impact Pathway Area 2							
Relevant Monitoring Data							
Short -term Outcomes							
Intermediate-term Outcomes							

Examples of Differences in LSRI Impact Pathways

Facility	Contextual Dimensions (Selected)
Canadian Light	Support fundamental science in multiple fields including applied (health, environmental materials).
Source	Industry is fee for service, has own advisory group. Do innovations in detector technology. Have application
	to policy , such as measurement standards for mine tailings. Active education program.
TRIUMF	Fundamental science, multiple discipline ; Beam line also used by industry . Do technical consulting services.
	Produce medical isotopes for treatment of cancer. Plan to combine research and development of new
	isotopes. Major engagement with public and students. Look for patents and companies spun off.
SNOLab	Located in an active mine. Lab is at a unique depth. Host multi-disciplinary experiments, providing all
	necessary conditions and services for users. Global competition for available space. Seen as innovator in
	business model for Centers of Excellence.
CFHT	Fundamental science; Careful validation of quality of data recorded. Users access archived data. Multi-
	country collaboration; Small global astronomy community. Last UV panoramic imaging in northern
	hemisphere. No interaction with industry except for involvement of key industry suppliers on proposed
	new telescope.
Oceans Network	Pioneering, community-based research using their labs. Working on public policy with Transport Canada,
	providing data products, e.g., sea state index, with long term continuous data. Work related to international
	trade agreements, defense, indigenous populations.
Compute Canada	A set of data centers, meeting increasing use of big data analysis and simulation in research. Do
	centralized software development. Achieve economies of scale and scope, saving the country money. Do
	lots of community consultation. Doing process innovation.
CCGS Amundson	Provide scientific equipment for experiments in Arctic with 1-1 staff to user ratio to trouble shoot. Multi-
	disciplinary and trans-sectoral research. Users change, e.g. oil industry was active but no longer. Data will
	be used by industry , e.g., seismic surveys, fish protocol. Political experts view related to territorial disputes .